电化学分析的进展及应用

李一峻 1988年毕业于中国科学技 术大学应用化学系,获理学学士学 位: 1994年毕业干中国科学院长春 应用化学研究所,获理学博士学位。 现任南开大学化学学院院长助理兼 化学系副主任, 教授, 博士生导师, 教育部高等学校化学与化工学科教 学指导委员 会化学基础 课程 教学指

导分委员会委员。主要从事电分析化学新方法、新技术的 研究。共发表论文 50 余篇。(通讯处: 天津市卫津路 94 号, 南开大学化学学院 300071)

常子栋 1984年2月出生, 2002年 获学士学位,现 为南 开大 学化 学学 院硕士研究生。主要从事分子印迹 聚合物膜修饰电极的研究。(通讯 处: 天津市卫津路 94 号, 南开大学 化学学院 300071)

何锡文 1963年北京大学化学系毕 业后进入南开大学工作,现任教授、 博士生导师。原南开大学化学学院 院长及化学系主任。现为中国化学 会分析化学专业委员会委员、《高等 学校化学学报》、《分析化学》、《分 析科学学报》、《分析试验室》和《冶 金分析》编委。主要科研方向为:

(1) 化学计量学领域; (2) 溶液状态(含生物大分子溶液状 态); (3) 新分析方法的研究。至今已有约270篇论文在国 内外学术期刊上发表, 其中 SCI 期刊论文为 135 篇。(通讯 处: 天津市卫津路 94 号, 南开大学化学学院 300071)

中图分类号: 065 文献标识码: A 文章 编号: 1000-0720(2007) 10-107-16

摘要: 本文对 2005 年 1 月~2007 年 3 月间 我国电化学分 析的发展进行了评述。文章按照电化学分析的不同领域分 为极谱与伏安法, 微电极、超微电极和修饰电极, 离子选 择性电极与传感器, 示波分析法, 电泳及色谱电化学, 光 谱电化学、电致发光法,石英晶体微天平,化学计量学方 法,其他分析方法和仪器装置及实验技术等几部分。引用 文献 561 篇。

关键词: 综述: 电化学分析

对 2005~2006 年两年间有关电化学分析的会议有第 九届全国化学传感器学术会议[A1]、第九届全国电分析化 学学术会议^[A2]、第三届全国微全分析系统学术会议^[A3]、 第四届国际华夏学者分析化学研讨会[44]、第三届上海国 际分析化学研讨会[A5]、第四届海峡两岸分析化学学术会 议[A6] 等会议,并有相应论文集,因此本文没有引入这些 会议论文。这段时间内,各种杂志上发表了多篇电化学分 析方面的综述、综合评价了各种检测方法、测定对象及应 用领域, 涉及到电化学分析的各个领域, 见表 1。

表1 电化学分析方面的综述 Tab. 1 The review in electroanalysis

Tab. 1 The review in electroanalysis	
综述内容	文献
蛋白质的电分析化学研究	A7
岩石矿物分析	A8
毛细管电泳-电容耦合非接触电导检测方法	A9
蛋白质的电化学分析研究进展	A10
碳糊电极在有机物电化学分析中的应用	A11
化学修饰电极的研究及其分析应用	A12
毛细管电泳—电化学/电化学发光及其微芯片技术	A13
QCM 和 SAW 传感器的原理及其在现场检测中的应用	A14
毛细管电泳安培检测法在中草药分析中的应用	A15
血红蛋白的电化学和电分析化学研究进展	A16
离子液体在分析化学领域中的应用	A17
分析化学中的碳纳米管修饰电极	A18
无标记型免疫传感器的原理及其应用	A19
高效阴离子交换色谱-脉冲电化学检测方法和应用	A20
离子液体及其在分离分析中的应用进展	A21
糖胺聚糖分析测定的研究进展	A22
微纳加工技术在超微电极制备中的应用	A23
电化学 DNA 传感器的研制及其医学应用	A24
导电聚合物传感器的研究进展	A25
毛细管电泳无接触电导检测研究进展	A26
免疫传感器在肿瘤标志物检测中的应用	A27
电化学生物传感器在农药检测中的应用	A28
金属纳米电极的制备、表征及其在电化学测量中的应用	A29
安培检测的微型全分析系统设计	A30
毛细管电泳及芯片毛细管电泳的电容耦合非接触电导	1100
检测	A31
二茂铁及其衍生物作为电化学传感器的研究进展	A32
分子印迹电化学传感器的研究进展	A33
碲的极谱催化波研究进展	A34
聚萘二胺修饰电极对痕量物质的检测	A35

化学传感器和纳米传感器新材料的应用现状	A 36
硒的分析方法	A 37
钴的检测方法进展	A 38

1 极谱与伏安法

极谱法和伏安法虽然是电化学分析中较早出现的分析方法,但是由于其灵敏、快速、简单等优点,现在仍是电化学分析研究中的热点之一。很多方法已经成熟地运用于医药、环境、材料等各个领域。见表 2。

表2 极谱与伏安法

Tab. 2 Polar ography and voltammetry

研究内容	文献
蛋白质与钍试剂 I 作用的电化学行为的研究	B1
面粉中增白剂过氧化苯甲酰的示差脉冲伏安法测定	B2
单扫描示波极谱法连测五味子、榛蘑中的铜和锌	В3
吡洛昔康的极谱测定	B4
头孢克洛降解产物的电化学行为和测定	B5
磷酸氯喹与过氧化氢缔合催化作用的极谱研究	В6
雷酚内酯的极谱催化波研究	В7
ALC-Pr(III)-F-三元络合物与蛋白质作用的电化学行为的研究	В8
硒(IV)-铜(II)体系的催化吸附波研究及应用	В9
变色酸 2B 线性扫描伏安法测定血清白蛋白	B10
乙酰胆碱酯酶催化水解产物的电化学行为	B11
β -环糊精- H_2O_2 存在下极谱催化法测定六次甲基四胺	B12
极谱法测定氯霉素的研究	B13
铋(III)、铅(II)和钒(V)极谱吸附波的研究	B14
极谱法测定高纯氧化铋中微量铅的方法研究	B15
钇(III)-3-噻唑偶氮-5-氨基苯酚络合物的极谱络合吸附波研究	B16
二茂铁甲基季铵盐对异烟肼的电催化氧化及其电分析 方法研究	B17
活性艳红 K-2G 与环糊精相互作用的极谱伏安法研究	B18
阿托伐他汀钙的电化学行为及其应用研究	B19
铂-丁二酮肟络合吸附波测定微量铂	B20
血红蛋白模拟过氧化物酶催化 $\mathrm{H}_2\mathrm{O}_2$ 氧化邻氨基酚 的固	B21
体电极伏安法研究	
8-氮鸟嘌呤与铜(II)的络合吸附波	B22
导数伏安法同时测定 5种混合人工合成色素	B23
以鸡冠花红为电化学探针线性扫描极谱法测定阿米卡 星	B24
隐丹参酮的电化学行为及其测定	B25
双烯醇酮乙酸酯的极谱催化波及应用研究	B26
极谱催化波法测定中草药中的芦丁	B27
流动注射双安培法测定柚皮苷	B28
酸性橙Ⅱ与牛血清白蛋白相互作用的电化学研究	B29

乙醛酸的微分脉冲极谱法定量分析	B30
中成药中微量砷的溶出伏安法分析	B31
应用纳米磁性球电化学检测特定序列 DNA	B32
基于银增强金标记物的阳极溶出伏安免疫分析用于补	В33
体第三成分的测定	
纳米 $ ext{PbO}_2$ 修饰电极安培检测器流动注射法快速测定化	B34
学需氧量	
流动注射不可逆双安培法测定水杨酸的研究	B35
铍试剂Ⅱ线性扫描伏安探针法测定蛋白质	B36
碳糊电极阳极吸附伏安法测定氧氟沙星	B37
β-环糊精用于阿莫西林的二次微分简易示波伏安测定	B38
阿魏酸在玻碳电极上的电化学行为及其分析测定	B39
循环伏安法测定磺胺嘧啶	B40
过硫酸钾存在下极谱催化波法测定芬布芬	B41
铅与呋喃甲酰基吡唑啉酮、联吡啶三元配合物吸附波	B42
的研究	D+2
微分脉冲极谱法测定痕量铀	B43
硼钼杂多酸 单扫描示波极谱法测定水中微量硼	B44
过氧化氢存在下平行催化氢波法测定奥沙普秦	B45
碳糊电极阳极吸附伏安法测定吡哌酸	B46
金橙 G 为电化学探针检测血清白蛋白	B47
微分脉冲阴极溶出伏安法测定阿米卡星	B48
碳糊电极阳极吸附伏安法测定环丙沙星	B49
单扫描极谱法测定罐装水果中微量锡	B50
芦丁的差示脉冲伏安法测定	B51
阴离子交换色谱-积分脉冲安培法 测定鱼粉 和玉米粉 水	
解液中氨基酸	B52
嵌入式超薄碳糊膜电极伏安法同时测定黄嘌呤和次黄	
嘌呤	B53
钴()- 甲基百里香酚蓝络合剂- 亚硝酸根络合吸附波的	
研究及应用	B54
铜-1-(2-吡啶偶氮)-2-萘酚体系的极谱吸附催化波研究	
	B55
及应用 Fenton 试剂预处理溶出伏安法测定印染废水中的铅	B56
茜素红S 与壳聚糖相互作用的电化学行为研究	B57
薯蓣皂甙元的极谱催化波及其应用	B58
氨基纳米磁球免疫电化学法检测甲胎蛋白的研究	B59
碳糊电极吸附溶出伏安法测定游离钙	B60
西维来司他的极谱伏安法研究	B61
四羟基蒽醌修饰活性炭碳糊电极阳极溶出法测铜	B62
铜(Ⅱ)-6-苄基氨基嘌呤络合物吸附波的研究及应用	В63
超声波-微分脉冲伏安法测定超痕量铜	B64
抗坏血酸和尿酸在胶束体系中的电化学行为及选择性	B65
测定的应用	
流动注射双安培法测定多巴胺	B66
藏红T作为电化学探针线扫极谱法测定透明质酸	B67
丹参酮 II A 在碳糊电极上的伏安行为及其测定	B68
高效阴离子交换-脉冲安培检测同时分析单糖和糖醛酸	B69

聚邻氨基酚 Ni ²⁺ 修饰碳糊电极的制备及其对葡萄糖的	B70
电催化氧化	
1,2-萘醌修饰的碳纳米管对β-烟酰胺腺嘌呤二核苷酸电化学氧化的催化作用	B71
丹参酮 II A 的电化学行为及其测定	B72
告(IV)- 邻苯二酚紫络合物碳 糊电极阳极吸 附伏安法 研	5,2
究	B73
微分脉冲溶出伏安法测定 2.4二硝基-1-萘酚	B74
In(III) -1-苯基 3-甲基 4- 噻吩甲酰基 吡唑啉酮-5 配合物	DE 5
吸附波的研究	B75
嗪草酮在玻碳电极上的伏安行为及测定	B76
以茜素红为电活性探针测定壳聚糖的研究	B77
修饰铋盘电极吸附伏安法测定痕量钴的研究	B78
铜膜差分脉冲阳极溶出伏安法测定药物中铋的含量	B79
Fe(III)-KIO ₄ -苋菜红体系催化动力学单扫描示波极谱法	Doo
测定痕量铁	B80
镍(Ⅱ)与3-噻唑偶氮-5-氨基苯酚体系络合吸附波的研	DO 1
究	B81
桑枝中桑色素的双安培法在线测定	B82
OAPH2O2-HRP 酶促产物的固体电极法研究及应用	B83
平行催化氢波法测定双氯酚酸钾	B84
聚乙烯醇增敏铋膜阳极溶出伏安法直接测定蜂蜜中锌	B85
亚甲基蓝与 DNA 相互作用的电化学研究	B86
流动注射不可逆双安培法测定对乙酰氨基酚	B87
泛昔洛韦在 NaOH 修饰玻碳电极上的伏安行为及测定	B88
微分脉冲溶出伏安法测定除草通	B89
大黄酸微分脉冲伏安法的研究和应用	B90
巯嘌呤与铜的配合物的电化学研究	B91
方波伏安法测定酚酞片含量	B92
阳极溶出伏安法直接测定藻液中的 Cu(II)	B93
玻碳电极的阳极化预处理及其分析应用	B94
CTAB化学吸附修饰电极线性扫描伏安法直接测定苯酚	B95
流动注射双安培法测定没食子酸	B96
单扫示波极谱法测定氰化物的方法研究	B97
用鸡冠花红线性扫描极谱法测定蛋白质及其应用	B98
氟罗沙星的电化学特性研究	B99
血清白蛋白的铅(II)-抗坏血酸络合吸附波法测定	B 100
单扫描极谱法测定注射液及血清中维生素 K1	B101
铕(III)- 钙试剂络合物吸附波及其应用研究	B102
碳糊电极阳极吸附伏安法测定大黄酸	B103
褪黑素的电化学氧化行为及伏安法测定	B104
用极谱法研究酸性大红 GR 与环糊精超分子体系	B 105
丹参酮的极谱分析研究	B 106
冬凌草甲素的电化学性质及电分析方法研究	B107
雷公藤内酯酮的极谱行为研究	B108
Fe(III)-KIO4-胭脂红体系催化动力学单扫描示波极谱法	B109
测定痕量铁的研究	
钍试剂线扫极谱分析法测定蛋白质的研究	B110

碘酸钾存在下萘丁美酮的极谱催化波法测定	B111
亚硝酸根的极谱测定	B112
碳糊电极阳极溶出法测定单宁酸的研究	B113
硝普钠 铜(II)体系的极谱法研究与应用	B114
蛋白质与罗丹明 B 相互作用的极谱分析	B115
以茜素兰S 为电化学探针测定 DNA 的研究	B116
活性艳红 K-2BP 与环糊精相互作用的电化学研究	B117
吸附伏安法对阿昔洛韦的研究与测定	B118
丙环唑·铜(I)配合物的极谱法研究	B119
基于胶体金标记的阳极溶出伏安免疫分析用于免疫球	B120
蛋白 G 的测定	D120
生理介质中硝普钠在玻碳电极上的电化学性质及电分	D101
析方法研究	B121
流动注射双安培法测定硫脲	B122
示差脉冲溶出伏安法测定食盐中痕量铅	B123
线性扫描伏安法测定痕量铊	B124
酪氨酸基于表面活性效应在碳糊电极上的伏安行为研	B125
究	Б125
微分电位溶出伏安法同时测定甘草中痕量铅和镉	B126
钒 络蓝黑 R络合物在碳糊电极上的阳极吸附伏安法研	D1 27
究及痕量钒的测定	B127
流动注射双安培法测定维生素P	B128
线性扫描阳极溶出伏安法测定微量银	B129
锡-茜素红 S 络合吸附波的研究	B130
极谱络合吸附波测定痕量金的研究	B131
Sn(IV)-PAN 极谱络合吸附波的研究	B132
单扫描示波极谱法测定药物中头孢曲松钠含量	B133
单扫描示波极谱法连续测定羊乳、黄芪、白鲜皮、蕨菜	B134
中铜和锌	DI 34
锌(Ⅱ)-邻菲罗啉络合物的极谱行为及应用	B135
电化学研究茜素络合剂 镨(III) 二元络合物 与蛋白质 相	B136
互作用	D130
溶出伏安法对维生素 ${f K}_3$ 的研究与测定	B137
单扫描极谱法测定复方青黛片中的吲哚醌	B138
镍(II)与 5-NO ₂ -PADAT 络合吸附波的研究	B137
极谱法测定痕量亚硝酸根一应用汞膜银电极为工作电	B140
极	D140
一阶导数溶出伏安法测定抗坏血酸	B141
碳糊电极阳极吸附伏安法测定诺氟沙星	B142
在亚硝酸盐存在下钴(II)-中性红络合物的极谱催化波	B143
的性质	ы43

2 微电极、超微电极和修饰电极

修饰电极通过电极的功能设计来改变电极原有性质, 从而在电极上可以进行某些预定的选择性反应,从而改善 了电极的性能。因此修饰电极具有很广阔的应用前景,自 出现一直都是电化学分析研究中比较活跃的领域。随着科 学领域的研究对象向微观转变,直径小于 100 μ m 的微电

选择性电极的研究

C33

C34

C35

C36

C37 C38 C39 C40

C41 C42 C43 C44 C45

C46

C47

C48

C49

C50

C51

C52

C53

C54

C55

C56

C57

C58

C59

C60

C61

C62

C63

新型双核铜金属配合物为中性载体的硫氰酸根离子高

极、超微电极的研究也越来越活跃, 见表 3。

表3 微电极、超微电极和修饰电极

表3 微电极、超微电极和修饰电极		
Tab.3 Micro-, ultramicroelectrodes and modified electrode		
研究内容	 文献	
事室峽的不自然自初於即坡峽 电极时电化字门为及 船 氨酸的伏安测定	C1	
聚 L-赖氨酸修饰电极对去甲肾上腺素的电催化氧化	C2	
磷酸可待因在 Nafion 修饰玻 碳电极上的伏安行为研究	G2	
機酸可得固在 Nation 修印坡 峽电板 上的人 女们 为研 先 及测定	C3	
聚溴酚蓝修饰电极对多巴胺的电催化作用及伏安测定	C4	
2-氨基-5-巯基-[1, 3, 4] 三氮唑自组装膜电极对尿酸的电	U+	
催化氧化及其分析应用	C5	
嵌入式超薄碳糊电极的研究及其应用	C6	
芦丁修饰电极的电化学特性及其催化性能	C7	
聚 L-酪氨酸修饰电极的制备及对多巴胺的测定	C8	
聚灿烂甲酚蓝膜修饰电极测定抗坏血酸的研究	C9	
纳米金修饰玻碳电极对儿茶酚的催化氧化	C10	
抗坏血酸在聚阿魏酸修饰玻碳电极上的电化学行为研究	C11	
聚氨基分环糊精修饰电极对多巴胺电化学行为的研究	C12	
聚 L-白氨酸修饰电极伏安法测定痕量多巴胺的研究	C13	
肾上腺素在对氨基苯磺酸修饰玻碳电极上的电化学行		
为	C14	
甲苯胺蓝修饰电极的电化学性质及对抗坏血酸的测定	C15	
Nafion 修饰玻碳电极伏安法测定痕量铟	C16	
去肾上腺素在 L-半胱氨酸修饰金电极上的电化学行为		
及其分析研究	C17	
纳米氧化亚铜固载亚甲兰复合膜修饰玻碳电极的电化		
学性质及其对多巴胺的电催化	C18	
多巴胺在聚硫堇和 Nafion 双层修饰玻碳电极上的电化		
学行为	C19	
活化玻碳电极直接测定全血中的尿酸	C20	
肾上腺素在对甲苯磺酸修饰电极上的电化学行为	C21	
聚对氨基苯磺酸修饰电极测定尿酸	C22	
共价键合四磺酸基铁酞菁有序多层膜电极	C23	
亚微米级叉指型超微带电极阵列的加工和电化学表征	C24	
以乙二胺为手臂分子制备的 DNA 修饰电极及其伏安性	C25	
能	C25	
肌红蛋白 纳米氧化铝模板 金胶复合组装体的直接电化	626	
学与电催化	C26	
金微盘电极的加工和表征	C27	
基于层 层自反应的葡萄糖氧化酶有序多层膜电极	C28	
多巴胺在 ${ m dsDNA/Ni}$ 2 $+$ /聚 邻氨基酚 修饰碳 糊电 极上的	C20	
伏安行为	C29	
聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备及其对	62.0	
血红蛋白的测定研究	C30	
ssDNA/十八酸修饰碳糊电极的制备及伏安法表征	C31	
碳纳米管修饰金电极检测特定序列 DNA	C32	

Nafion 修饰铂电极测定天然海水中一氧化氮	C64
电聚合 o-ImBPTPPMn (III) Cl 膜修饰玻碳电极同时测定	C65
抗坏血酸和多巴胺	G05
聚 L-赖氨酸修饰电极循环伏安法测定药剂中的多巴胺	C66
铜离子选择性微电极用于银杏根尖离子流的时空监测	C67
水杨醛肟铜络合物中性载体高选择性水杨酸根电极的	C68
研究	
聚鲁米诺 镍(II)复合物自组装膜修饰电极电化学法测定氢氯噻嗪	C69
氨基乙硫醇修饰金电极直接测定芦丁含量的研究	C70
聚 2,6 吡啶二甲酸/多壁碳纳米管修饰电极的电催化性	
能	C71
聚对苯二酚修饰玻碳电极的制备及其对抗坏血酸的催	
化氧化作用	C72
纳米二氧化钛膜光催化分解-电化学法联用测定水体中	
的总磷	C73
聚天青 B/铜纳米复合物膜修饰电极用于葡萄糖的测定	C74
纳米六氰合铁酸铜化学修饰丝网印刷电极对 H ₂ O ₂ 电催	c=-
化性能的研究	C75
新型硫醇硫组合电极研制及性能测试	C76
魔芋多糖固定化肌红蛋白的直接电化学与电催化	C77
氯丙嗪在离子液体 BMIMPF6 修饰玻碳电极上的伏安行为	C78
聚 L-精氨酸修饰电极存在下同时测定多巴胺和肾上腺	C79
素	G/9
碳纳米管膜修饰玻碳陶瓷复合材料电极对亚硝酸盐的	C80
电催化还原	COU
对乙酰氨基酚在聚刚果红修饰电极上的伏安测定	C81
多壁碳纳米管修饰玻碳电极用于过氧化氢的检测	C82
以纳米 Ag 与接枝酪蛋白为复合载体的葡萄糖氧化酶电	C83
极的研究	300
多巴胺在 2 -氨基 -5 -巯基 $-[-1, 3, 4]$ 三氮唑自组装膜电极	C84
上的准可逆行为研究及分析应用	
酵母核糖核酸在碳纳米管修饰电极上的电化学行为及	C85
其分析测定	
用于丝网印刷电极条上几种固定酶方法的比较研究	C86
3,6-二氧杂-1,8-辛二硫醇-汞(Ⅱ)配合物修饰碳糊电极	C87
的制备及循环伏安行为研究	
Hb-CTAB/GC 电极的电化学行为研究及对 NO 的电催化	C88
检测	
二茂铁修饰石墨粉-环氧树脂固态电极测定对苯二酚	C89
过氧化聚吡咯膜修饰电极检测肾上腺素研究	C90
管状流通式阴离子表面活性剂电极的研制	C91
PVC 膜修饰电极 直接测 定痕量 聚氧乙 烯类非 离子表面	C92
活性剂	C02
双硫腙修饰固体银汞合金电极吸附伏安法测定痕量铅取苯素红薄腊修饰电极对碎酸床土霉素的电影化作用	C93
聚茜素红薄膜修饰电极对硫酸庆大霉素的电催化作用	C94

	粉末微电极溶出伏安法检测溶液中的重金属离子	C95
	对叔丁基-杯[8] 芳烃膜修饰电极的电化学性质研究	C96
	流动注射掺杂普鲁士蓝碳糊电极测定过氧化氢	C97
	镍氢氧化物修饰玻碳电极的制备及其电化学行为	C98
	Nafion 修饰 A_g/A_gCl 参比电极的研制及其在 pH 电化学 传感器中的应用	C99
	聚 L 谷氨酸修饰电极的制备及对多巴胺的测定	C100
	α-萘胺在多壁碳纳米管-DHP 膜修饰电极上的电化学行 为及其测定	C101
	一种新型卟啉修饰电极的循环伏安研究及溶解氧的测定	C102
	碳纳米管修饰电极对对苯二酚和邻苯二酚的电催化研	0102
	究	C103
	去甲肾上腺素在 3-氨基-5-巯基-1, 2, 4三唑修饰金电极上的电化学行为及研究	C104
	肾上腺素在碳纳米管-离子液体糊修饰电极上的伏安行为	C105
	天青 I 修饰玻碳电极的电化学性质及其对 NADH 的催化氧化	C106
	基于三辛胺缔合作用的草酸及柠檬酸电极的制备	C107
	硫唑嘌呤在聚合 1-丝 氨酸修饰 玻碳电极 上的电化学行	
	为及其测定	C108
	纳米银修饰电极对痕量硫氰根的测定	C109
	Cu(CMQA)(H2O)配合物修饰电极作为识别和测定变性	
	核酸的电化学探针	C110
	巯基乙酸自组装电极对多巴胺的电催化及其分析应用	C111
	碘在玻碳汞膜电极上的伏安行为及应用	C112
	铁氰根和聚组氨酸复合膜修饰电极用于多巴胺的电催	
	化测定	C113
	用碳黑微电极伏安法测定多巴胺	C114
	聚荧光素薄膜修饰电极对多巴胺的电催化作用	C115
	铋离子修饰碳糊电极的研制与应用	C116
	微型多酚氧化酶电极的研制及其应用	C117
	辅酶Q在CPT自组装修饰电极上的电化学行为及其分	C1.10
	析应用	C118
	活性嫩黄 K-4G 在碳糊电极上的电化学研究	C119
	聚吖啶橙修饰电极上对苯二酚的电催化及分析应用	C120
	普鲁士兰修饰碳黑微电极 同时微 分伏安 法测定 多巴 胺	
	和抗坏血酸	C121
	新型双核铜配合物修饰玻碳电极对抗坏血酸的电催化	
	作用及其测定	C122
	肾上腺素在聚氨基β-环糊精修饰电极上的电化学行为	C123
	聚苯基荧光酮修饰玻碳电极吸附溶出伏安法测定痕量汞	C124
-		

3 离子选择性电极与传感器

离子选择性电极和传感器具有简便、快速、高选择性 等特点,因此受到科学研究人员的重视,也是比较热门的 研究领域,见表4。

氧化苏木精复合电极测定牛奶中残留青霉素

D34

表 4 离子选择电极与传感器

Tab 4	Ion	se lective	ele ctr odes	and	sensors
iau. +	ЮH	SCICLLIVE	cie cu oues	anu	SCHSUI S

Tab. 4 Ion selective electrodes and sensors		再生丝素固定乙酰胆碱酯酶生物传感器	D35
研究内容	文献	近似体积校正等电位差-离子选择性电极法测定氟的研	D36
盐酸曲马多离子选择性电极的研制与应用	D1	究	
离子选择性电极测定食品中的硒	D2	溶胶-凝胶法修饰的一次性氯离子选择性电极的研究	D37
新型钴配合物为中性载体的高选择性碘离子电极的研		含电子媒介物的一次性葡萄糖传感器的响应性能	D38
究	D3	丝网印刷电化学传感器测定硫离子	D39
新型中性载体 PVC 膜高选择性硫氰酸根电极研究	D4	选择性中性载体硫氰酸根电极的研究	D40
纳米金修饰电流型 CA19-9 免疫传感器的制备及应用	D5	一种新的测定亚硝酸根的化学传感器	D41
基于 Ag/AgCl 丝双涂膜司帕沙星选择电极的研制与应用	D6	8-羟基喹啉-5-磺酸修饰电极 pH 传感器的制备及应用	D42
多巴胺修饰自组装金电极作为生物传感器测定核酸	D7	溶胶-凝胶膜修饰的碘离子选择性电极	D43
在酸性介质中用氟电极测定氟离子的新方法	D8	基于壳聚糖膜固定双酶的胆碱传感器的研究	D44
加碘食盐中微量碘的离子选择性电极测定	D9	甲胎蛋白光寻址电位式传感器的研究	D45
场效应管药物传感器	D10	碳纳米管负载铂修饰电极结合溶胶-凝胶技术制备胆固	D46
掺杂 2,9-二甲基-4,7-二苯基-1,10-邻二氮菲的石蜡碳糊	D11	醇传感器	
铜离子选择性电极的研究	D11	一种新型汞离子选择薄膜传感器	D47
N, N, N', N'- 四甲基乙二胺为中性载体的 PVC 膜氢离子		掺杂纳米普鲁士蓝溶胶-凝胶修饰葡萄糖生物传感器	D48
传感器的研制	D12	有机-无机杂化材料膜制备生物传感器用于在线生化需	D49
基于双层纳米金修饰的高灵敏电位型乙肝表面抗原免		氧量的测定	
疫传感器研究	D13	铂电极表面生物素 亲和素固载单链脱氧核 糖核酸的电	D50
基于自组装 L-半胱氨酸与纳米金的 H,O, 生物传感器	D14	化学传感器	Doo
纳米金·蛋白 A 介导抗体定向固定的压电传感及电化学		利用流动注射型乙酰胆碱酯酶传感器监测海水中马拉	D51
特性研究	D15	硫磷	D31
钳状杯[4] 芳烃为探针的固态 PVC 膜汞离子选择性电极	D16	一种新的膦酸酯分子烙印电化学传感器	D52
一种基于静电吸附作用的直接检测补体 C3 新型可再生		微型 $\lg G$ 免疫传感 器的制备及其对人免疫球蛋白 G 的	D53
电容型免疫传感器	D17	响应	D33
功能化纳米金增强的谷胱苷肽电化学检测和巯基识别	D18	基于多层叉指超微带电极阵列的葡萄糖传感器	D54
温度对 Nafion-结晶紫光纤湿度传感器性能的影响	D19	壳聚糖/聚乙烯吡咯烷酮固定辣根过氧化物酶的过氧化	D55
以分子印迹电聚合膜为仿生受体检测辛可宁	D20	氢生物传感器	D55
功能化纳米金放大的 DNA 电化学传感器研究	D21	基于硫堇衍生化自组装膜的丙肝电化学免疫传感器	D56
新型 DNA 电化学传感器的研制及其用于 DNA 氧化性损		基于丝网印刷工艺的安培型酶免疫传感器的研究	D57
伤检测的研究	D22	纳米 ZnO 增强葡萄糖生物传感器的制备和应用	D58
一种新型一氧化氮电化学传感器	D23	基于静电吸附甲苯胺蓝和纳米金固定过氧化物酶生物	D50
基于酶催化沉积质量放大的压电免疫传感器的研究	D24	传感器的研究	D59
巯基乙酸自组装膜 DNA 电化学传感器 对转基因 NOS 的		基于伴刀豆球蛋白固定过氧化物酶无介体新型生物传	DCO
定量检测	D25	感器的研制	D60
基于辣根过氧化物酶 /纳米金/辣根过氧化物酶 /多壁纳		硫代乙醇酸与半胱氨酸铜共固定自组装过氧化氢传感	DCI
米碳管修饰的过氧化氢生物传感器的研究	D26	器的研制	D61
DNA-过氧化聚吡咯生物复合膜传感器的分析应用	D27	基于微机电系统技术和纳米金自组装膜的安培型免疫	
以新亚甲蓝为介体的过氧化氢 传感器 的电化学行为 研		传感器研究	D62
究	D28	一种基于碳纳米管的安培型过氧化氢生物传感器	D63
基于纳米金/硫堇层层自组装的新型电流型酶 癌胚抗原		纳米碳管修饰铂结合溶胶-凝胶固定酶制备高性能胆碱	
免疫传感器	D29	生物传感器	D64
基于核酸适配体和纳米材料的凝血酶蛋白特异性识别		新型高选择性水杨酸根离子电极的研究	D65
电化学生物传感器	D30	压电免疫传感器法检测蓖麻毒素	D66
电位型聚吡咯 pH 传感器的制备	D31	基于氧化还原聚合物固定双酶的谷氨酸传感器的研究	D67
-		基于 Nafion 膜修饰的血吸虫抗体压电免疫传感器研究	D68
		新型压电肿瘤标志物微阵列免疫传感器的研究	D69
可再生使用的溶胶-凝胶甲胎蛋白免疫传感器 对硫磷分子烙印传感器的制备及应用	D32 D33		

基于电化学电容检测的新型钙离子传感器	D70
基于双层类脂膜的去甲肾上腺素传感器	D71
新型镍配合物中性载体高选择性水杨酸根离子电极的	D72
研究	D/2
基于铁氰酸镍修饰的双酶电流型胆碱传感器的研究	D73
以芴的衍生物为载体的 PVC 膜铜(II)离子选择性电极	D74
的研究	D/4
聚亚甲基蓝和纳米金修饰玻碳电极的葡萄糖生物传感	D75
器	D13
凝胶醌氢醌 PVC 涂膜曲马多选择电极的研制	D 7 6
双层类脂膜非标记乙型肝炎表面抗原免疫传感器	D77
丙肝压电免疫传感器的研制	D78
乙酰半胱氨铜自组装修饰金电极作为生物传感器测定	D 7 9
一氧化氮	Diy
硫杂大环希夫碱汞(Ⅱ)配合物为中性载体的碘离子选	D80
择性电极的研究	1500
丙肝电化学免疫传感器在血清检测中的应用	D81
Nafion 膜修饰无分离步骤的 IgM 电化学免疫传感器研究	D82
中性载体双(N-乙基-N-苯基氨基二硫代甲酸)1,4丁二	D83
醇酯 PVC 膜银离子选择电极的研制	1000
组装法制备的敌百虫压电晶体传感器	D84
羧基化碳纳米管修饰的安培型葡萄糖传感器测定血液	D85
中葡萄糖	Dw
基于聚硫堇和纳米金共修饰的过氧化氢生物传感器的	D86
研究	1000
黄瓜 DNA 伏安传感器的制备及其应用	D87
基于 Ag/AgCl 丝双涂膜曲马多离子选择电极的研制与应	D88
用	1000
基于抑制作用的新型葡萄糖氧化酶传感器测定环境污	D89
染物汞离子的研究	D09
基于巯基自组装单层膜技术的补体 C3 压电免疫传感器	D90
的研究	D90
Sol-gel 法制备 W/WO 3 H+ 选择性电极的研究	D91
利用溶胶-凝胶生物传感器测定饱和苯系物废水中酚类	D92
化合物	D92
基于巯基和聚电解质双层自组装膜的压电免疫传感器	D93
检测小鼠 IgG 气溶胶	D33
新型涂碳式双嘧达莫选择电极的研制与应用	D94
表面活性剂在离子选择电极分析中的增敏作用	D95
离子选择性电极测定溶液中 Br^- 时去除 Cl^- 的干扰	D96
氟离子选择电极测定硅酸盐材料中 SiO_2 含量	D97
以伴刀豆球蛋白为固定基质的脲酶生物传感器	D98
基于原位电聚合硫堇的双酶型葡萄糖传感器的研究	D99
压电 DNA 传感器检测模式对频率漂移的影响	D100
一种用于测定尼古丁的新型压电石英晶体传感器的研	D101
制	10101
氧弹燃烧 离子选择性电极法测定氟	D102
以乙基紫为电活性物质的 PVC 膜碘离子电极的研制	D103

一种高灵敏的压电免疫传感器用于高密度脂蛋白的测定	D104
铅离子选择性电极检测终 点间接 电位测 定大蒜 中大 蒜	D105
辣素含量	D103
双核汞(Ⅱ)席夫碱配合物为中性载体的碘离子选择性	D10.6
电极研究	D106
硝酸活化高灵敏度离子选择性电极法测定氟	D107
试验条件对氟电极空白电位值的影响	D108
亚甲基蓝为介体的甲胎蛋白免疫传感器的研制及应用	D109
聚氯乙烯膜碘离子选择电极在溴碘离子共存体系分析	
中的应	D110
电解沉积制作复合 ${ m Ag/Ag_2S}$ 电极测定污水中氰化物	D111
基于 2 3-丁二酮双缩氨基硫脲为中性载体的新型银离	
子选择性电极的研究	D112

4 示波分析法

示波分析法包括交流示波极谱滴定、各种示波计时电位法和示波伏安法等。但这个领域的研究不是很活跃、发表的论文较少,见表 5。

表 5 示波分析法
Tab.5 Oscillographic analysis

研究内容	文献
高碘酸钾氧化丽春红-2R 催化动力学单扫描示波极谱法	E1
测定痕量 Fe(III) 的研究	E1
级联神经网络用于单扫描示波极谱信号的测定	E2
单扫描示波极谱法同时检测哌拉西林钠和氯霉素	E3
${ m KIO_3}$ 用于药片与饮料中抗坏血酸的示波测定	E4
交流示波极谱滴定法测定电镀液中的微量铅	E5
二次微分简易示波伏安法测定酚磺乙胺	E6
交流示波极谱法测定工业污水中的微量汞	E7
示波极谱滴定法测定芦丁中总槲皮素含量	E8
催化氢波-单扫描示波极谱法测定克拉霉素	E9
示波极谱法测定饮料中铅和镉	E10
示波极谱法测定葡萄籽提取物中原花青素	E11
三价铬和烟酸的示波行为及其应用	E12
白杨黄酮的单扫描示波极谱法测定及应用	E13
示波极谱法测定保健食品中维生素 B1	E14
示波极谱法直接快速测定痕量锑的研究	E15
示波滴定法测定铝合金中铜的含量	E16
示波伏安法测定碘酸钾碘盐中碘	E17
示差脉冲极谱法确定镉(II)-甘胺酸体系的配合物稳定	E18
常数	E10
单扫描示波极谱法测定非那雄胺	E19

5 电泳及色谱电化学

近几年, 电泳及色谱电化学得到了突飞猛进的发展, 成为了电化学分析领域最热门的方向之一, 在各类杂志上

发表了大量这方面的论文、研究方法和对象多种多样、见表 6。

表6 电泳及色谱电化学

Tab. 6 Electrochemistry in electrophoresis and chromatography

Tab. 6 Electrochemistry in electrophoresis and chromatog	raphy
研究内容	文献
微渗析活体取样与液相色谱安培检测法联用测定鼠脑	F1
中黄嘌呤和次黄嘌呤	гт
毛细管电泳高频电导法测定尿中 MDMA 及其代谢物	F2
氯霉素的高效毛细管电泳分离 电导检测	F3
固相萃取-高效液相色谱电化学法检测大鼠血浆儿茶酚胺	F4
毛细管电泳电化学检测法测定烟草中的多元酚	F5
高效阴离子交换色谱-电化学法测定酱油中的氨基酸	F6
毛细管电泳安培法测定脂可平胶囊中的姜黄素	F7
毛细管电泳电化学检测法同时测定三种氨基酸的电离	
常数	F8
高效毛细管电泳电导分离·检测亮氨酸对映体	F9
聚乙烯吡烙烷酮修饰碳糊电极-双通道毛细管电泳安培	
法测定环境中的硝基酚	F10
毛细管电泳场放大进样 高压非接触电导检测测定痕量	
Zn^{2+}	F11
葡萄酒中 7 种酚酸的色谱电化学分析	F12
毛细管电泳高频电导法测定几种中药中的丁香酚	F13
双诵道毛细管电泳-电化学法同时检测硝酸根、亚硝酸	
根和氯酚类化合物	F14
毛细管电泳高频电导法 同时测定阿莫西林和克拉维酸	
七细目电冰局频电导法 问时 测 足門 吴 四 怀 和 元 拉 维 故	F15
	E1.6
体液中卡托普利的乙醚提取毛细管电泳法测定 毛细管电泳法测定复方制剂中的硝酸咪康唑	F16
	F17
胶束电动毛细管色谱安培检测中药马齿苋中多巴胺和	F18
去甲肾上腺素	
毛细管电泳-柱端喷壁式电化学检测法用于利尿剂氢氯	F19
噻嗪和氨苯喋啶的研究	
毛细管电泳-安培检测法用于 7-甲基鸟苷与丝裂霉素 C	F20
分离检测的研究	120
毛细管电泳-高频电导法快速测定牡丹皮中的丹皮酚	F21
NO2-的芯片毛细管电泳- 修饰碳糊电极电化学检测	F22
中药菟丝子中生物活性成分的毛细管电泳-电化学检测	F23
复方丹参片中四种成分的高效液相色谱-电化学检测-紫	F24
外检测法分析	124
毛细管电泳-电化学检测法检测水解植物蛋白调味液中	F2.5
的 3-氯-1, 2-丙二醇及其应用	F25
高效阴离子交换色谱脉冲安培检测法测定烤烟中的水	
溶性葡萄糖、果糖和蔗糖	F26
高效液相色谱-二极管阵列检测-电化学检测联用技术同	
时测定三精双黄连口服液中的4种化合物	F27
毛细管电泳-电化学法测定阿莫西林含量	F28
吲哚美辛的毛细管电泳测定法研究	F29
毛细管电泳高频电导法测定虫草中的有效成份	F30
11.4	

毛细管电泳-电化学检测法测定蜘蛛香中多元酚类化合物	F31
毛细管电泳法测定双氢青蒿素的含量	F32
毛细管电泳-柱端安培检测中分离 毛细管与 检测电极 对	F33
接方式比较的研究	гээ
毛细管电泳电容耦合非接触电导检测-双端进样同时测	
定无机阴离子和阳离子	F34
奋乃静和氟奋乃静的毛细管电泳柱端喷壁式安培检测	F35
高效液相色谱-电化学阵列检测器检测 10 种磺胺药物在	133
	F36
鸡肉中的残留 BDB基本格数 DBB 中心 计中心 计	F2.7
聚甲基丙烯酸甲酯电泳芯片电化学检测氨基酸	F37
微渗析活体取样-高效液相色谱电化学检测法测定鼠脑	F38
中的单胺类神经递质	
毛细管电泳-荧光/非接触电导组合型检测器的研制	F39
毛细管电泳-电化学检测法测定血浆中水溶性小分子抗	F40
氧化剂	140
地骨皮中生物活性成分的毛细管区带电泳 安培检测方	
法研究	F41
毛细管电泳-电致化学发光测定诺氟沙星的研究	F42
毛细管电泳单脉冲伏安测定重金属铜铅锌镉	F43
毛细管电泳-电化学检测法测定葡萄和葡萄酒中的白藜	1.0
七细目电泳 电化子检测/A测定制 岛和制岛/自中的日本 芦醇	F44
	E45
毛细管电泳法分离测定小麦根中的有机酸	F45
牡丹皮中有效成分丹皮酚 的毛细 管电泳 快速检测新方	F46
法	
高效阴离子交换色谱 脉冲安培检测器测定多种基体中	F47
痕量碘离的方法	,
高效液相色谱/电化学法测定大鼠血液和脑组织中单胺	E40
类物质的含量	F48
高效毛细管电泳电导法测定青蒿素的含量	F49
毛细管电泳-电导法分离检测磺胺嘧啶、磺胺甲嘧啶和	
磺胺二甲嘧啶	F50
毛细管电泳-电致化学发光法测定阿替洛尔	F51
毛细管电泳 电化学检测法用于中药石韦中绿原酸和槲	131
	F52
皮素的同时测定	
液相色谱电化学安培检测乳粉中的脂溶性维生素 A,E	F53
和 D ₃	
毛细管电泳脉冲安培检测药物制剂中的氨基酸	F54
双氢青蒿素的毛细管电泳高频电导法测定	F55
毛细管电泳测定甲芬那酸制剂及体液中的甲芬那酸	F56
毛细管电泳-电化学检测益母草及其冲剂中的黄酮类化	F-7-
合物	F57
硝基苯酚位置异构体的毛细管电泳-方波安培检测研究	F58
样品堆积富集毛细管电泳测定磺化杯芳烃	F59
毛细管电泳高频电导法测定制剂中卡托普利	F60
CHE CHARLY COMMANDED IN 1910 IN	100

6 光谱电化学、电致发光法

光谱电化学方法虽然特点明显,但是在国内发表的论 文并不多,见表 7。

表7 光谱电化学、电致发光法

Tab. 7 Spectroelectrochemistry and electrochemiluminescence

研究内容	文献
流动注射电化学发光分析法测定氨苄西林	G1
电化学发光淬灭法测定脑白金胶囊中的褪黑素	G2
电化学发光法测定人尿中的磷酸苯丙哌林	G3
中性微乳液介质增敏鲁米诺电化学发光研究	G4
流动注射电化学发光分析法测定维生素 BI 及在尿液分析中的应用	G5
Nano TiO, Nafion 吡啶钌复合物膜修饰的玻碳电极上电	
Nano HO ₂ /Nano Huw 打发 占 初膜	G6
电化学发光 PCR 定量检测 H-ras 癌基因点突变	G7
单分散齐聚芴电致发光材料的合成及器件化	G8
基于一次性蓮层色谱电极高选择电化学发光分析法测	00
定 Ni(II)的研究	G9
鲁米诺在氧化铟锡玻璃上的电聚合及电化学发光性能	
研究	G 10
毛细管电泳 电致化学发光法测定人尿中脯氨酸和羟脯氨酸	G 11
铂溶胶修饰电极对鲁米诺电化学发光的增敏作用	G 12
簇状纳米二氧化锰修饰 玻碳电 极电化学发光 法测定 己 烯雌酚	G 13
修饰石墨电极表面电化学发光反应微环境的研究及其 分析应用	G 14
流动注射电化学发光分析法测定左旋多巴的研究	G 15
电化学发光淬灭法测定SOD	G 16
槐定碱 联吡啶钌电致化学发光的研究	G 17
高效液相色谱电化学发光法检测抗坏血酸	G 18

7 石英晶体微天平

石英晶体微天平已经不是现在研究的热点了,因此发 表的文章很少,见表 8。

表8 石英晶体微天平

Tab. 8 Quartz crystal microbalance

研究内容	文献	
电化学石英晶体微天平应用研究和背景扣除	H1	
石英晶体微天平的测量仪的研究及应用	H2	
甲基磷酸二甲酯气体的石英晶体微天平流动检测方法	Н3	
研究		

8 化学计量学方法

见表 9。

表9 化学计量学方法

Tab. 9 Chemometrics

研究内容	文献
微流控电泳芯片中化学发光信号的分段门限小波降噪	操 I1
基于小波变换的循环伏安弱信号特征信息提取	12
不依赖于统计模型的手性 毛细管 电泳分离多指 标同优化	13

9 其他分析方法

包括电位、电导、电流和库仑等分析方法,见表 10。

表 10 电位分析及其他

Tab. 10 Other techniques

Tab. 10 Other techniques	
研究内容	文献
恒电位氟-铝配位滴定法测定铝的研究	J1
卡尔费休库仑法测定六氟化硫中痕量水	J2
Gran 电位滴定法测定乳酸环丙沙星	J3
高效阴离子交换色谱脉冲安培检测器测定工业醋酸中	1.4
痕量碘离子的方法	J4
水溶性聚胺PEI与铜离子螯合物结构的测定及其分析	
应用	J5
聚色氨酸膜电极相敏交流伏安法测定肾上腺素	J6
离子交换 脉冲积分安培法分离检测氨基糖苷类抗生素	J7
电化学预处理玻碳电极微分计时电位溶出法测定 DNA	10
中的嘌呤碱基及 DNA 浓度	J8
纳米金聚集复合物放大的计时电位法测定补体 C_3	J9
pH 电位滴定法测定溶液中钙、镁离子与聚天冬氨酸的	но
生成稳定常数	J10
固体汞合金电极电位溶出法同时测定痕量锌、镉、铅	J1 1
电位滴定法测定铜箔电解液中氯离子	J12
甲基紫电极 EDTA 电位滴定法测定微量铅	J13
酸性媒蓝紫-微分吸附计时电位法测定合金钢中微量钙	J14
恒电流库仑分析法测定铬矿中三氧化二铬	J15
硝酸银电位滴定法测定铁矿石中水溶氯	J16
用氧化还原电位滴定法测定磺酰氯的含量	J17
自动电位滴定法测定米糠中维生素 B1 含量的方法研究	J18
阻抗滴定法测定巯基乙酸及其混合自组装膜表面酸度	J19
非平衡态恒电位配位滴定法同时测定铁和铝	J20
电位滴定法研究多胺铕铽络合物稳定性及其对磷酸二	.121
酯键水解断裂	J2 1
基于酶催化沉积放大的电化学阻抗法用于人免疫球蛋	.122
白 M 的检测	J22
反相离子对色谱 脉冲安培电化学 法测定硫 酸庆大霉素	.123
中各组分含量	J23
镍电极开路电位测定微量硼氢根离子	J24
电流滴定法对两种短链分子自组装膜的研究	J25
脉冲磁场氯离子选择电极瞬时电位分析研究	J26

阻抗滴定法测定 3 巯基丙酸自组装膜的表面酸度	J27
铋膜电极微分电位溶出法测定环境样品中生物可利用 镉	J28
液体推进剂偏二甲肼自动电位滴定分析方法的建立	J29
计时电流法研究 4(N-亚硝基甲氨基)-1-(3 吡啶基)-1-	120
丁酮对谷氨酸脱氢酶活性的影响	J30
Gran电位滴定法测定盐酸雷尼替丁的含量	J31
酸碱双点电位法测定盐酸环丙沙星的含量	J32
恒电流库仑法测定工业废水中 Cr(VI) 的方法研究	J33
Ag-AgI 电极测定药物、果蔬中抗坏血酸	J34
聚酰胺分离富集催化动力学电位法测定痕量钯	J35
铋膜电极微分电位溶出法测定生物材料中痕量铅	J36
氟-铁恒电位配位滴定法测定铁离子研究	J37
电位法测定谷胱甘肽转移酶活性的研究	J38
两点电位滴定法测定染料亚甲基蓝的含量	J39
恒电流库仑分析法测定维生素 C 等药物	J40
恒电流电解溶样测定钢中磷	J41
恒电流库仑分析法测定青霉素 G 钠盐含量	J42
电位滴定法测定氰尿酸的含量	J43
催化动力学电位法测定痕量铬	J44

10 仪器装置及实验技术

分析化学的发展离不开新仪器、新技术的出现。今年来发展出了一系列的新仪器和新技术,主要有集成铜电极的聚甲基丙烯酸甲脂电泳芯片的制作^[KI],基于 LabVIEW7 Express 的电导滴定虚拟仪器 ^[K2] 和毛细管电泳柱端安培检测装置的研制^[K3]。

参考文献

第九届全国化学传感器学术会议,扬州,2005.4 [A1] [A2] 第九届全国电分析化学学术会议,南京,2005.10 第三届全国微全分析系统学术会议,武汉,2005.10 [A3] [A4] 第四届国际华夏学者分析化学研讨会,大连,2006.9 [A5] 第三届上海国际分析化学研讨会,上海,2006.9 第四届海峡两岸分析化学学术会议,武汉,2006.10 [A6] 丁小勤等. 分析试验室, 2006, 1; 114 [A7] 汤志勇等. 分析试验室, 2006, 9: 112 [A8] 谭 峰等. 色谱, 2005, 2: 152 [A9] [A10] 孙 伟等. 化学研究与应用, 2005, 2: 151 刘传银等. 化学研究与应用, 2005, 4: 443 [A11] 刘有芹等. 化学研究与应用, 2006, 4: 337 [A12] 尹学博等. 化学进展, 2005, 2: 181 [A13] 徐秀明等. 化学进展, 2005, 5: 876 [A14] [A15] 周晓光等. 化学进展, 2006, 0203: 331 [A16] 孙 伟等. 化学世界, 2005, 8: 504 段培高等. 化学世界, 2006, 3: 183 [A17]

邹雪莲等. 化学世界, 2007, 01: 179

王 珂等. 分析化学, 2005, 3: 411

[A18]

[A19]

丁永胜等, 分析化学, 2005, 4: 557 [A20] 肖小华等. 分析化学, 2005, 4: 569 [A21] 张 莉等. 分析化学, 2005, 7: 1023 [A22] 朱明智等. 分析化学, 2006, 12, 1794 [A23] 邹小勇等. 分析测试学报, 2005, 1: 123 [A24] [A25] 罗利军等. 分析测试学报, 2005, 4: 122 王立新等. 分析测试学报, 2006, 2: 120 [A26] 严 枫等. 分析测试学报, 2006, 2: 132 [A27] **袁永海等**, 分析测试学报, 2006, 5, 121 [A28] 鹏等. 分析科学学报, 2005, 3: 327 [A29] [A30] 徐 溢等. 分析科学学报, 2005, 6: 682 康信煌等. 分析科学学报, 2006, 4: 471 [A31] 阚显文等. 分析科学学报, 2006, 4: 478 [A32] [A33] 李春涯等. 分析科学学报, 2006, 5: 605 刘传银等. 理化检验(化学分册), 2005, 1:72 [A34] 李新贵等. 理化检验(化学分册), 2005, 9:697 [A35] [A36] 高 玲等. 理化检验(化学分册), 2006, 1, 60 [A37] 王未肖等. 理化检验(化学分册), 2006, 06: 505 毛云中等. 理化检验(化学分册), 2006 10: 861 [A38] 1 极谱与伏安法 [B1] 彭 贞等. 分析试验室, 2005, 01; 37 王赪胤等. 分析试验室 2005, 01, 46 [B2] 李巧云等. 分析试验室, 2005, 01: 52 [B3] 马淮凌等. 分析试验室, 2005, 02, 51 [B4] 严金龙. 分析试验室, 2005, 02, 59 [B5] [B6] 亚等. 分析试验室, 2005, 02, 62 斌等. 分析试验室, 2005, 04, 49 [B7] 贞等. 分析试验室, 2005, 05. 8 [B8] [B9] 杨丽珠等. 分析试验室, 2005, 05, 29 伟等. 分析试验室, 2005, 05: 59 [B10] 菊等. 分析试验室, 2005, 06: 62 [B11] [B12] 马淮凌等. 分析试验室, 2005, 07: 32 任乃林等. 分析试验室, 2005, 08: 48 [B13] 王瑞侠等. 分析试验室, 2005, 08: 62 [B14] [B15] 坚等. 分析试验室, 2005, 10: 34 杜芳艳. 分析试验室, 2005, 10:44 [B16] 姚慧琴等. 分析试验室, 2005, 12: 29 [B17] [B18] 李有琴等. 分析试验室, 2006, 01:9 [B19] 董社英等. 分析试验室, 2006, 01, 58 强等. 分析试验室, 2006, 02: 97 [B20] 涛等. 分析试验室, 2006, 03:1 [B21] [B22] 微等. 分析试验室, 2006, 05: 6 罗利军等, 分析试验室, 2006, 06: 39 [B23] [B24] 王学亮. 分析试验室, 2006, 06:43 张 静等. 分析试验室, 2006, 10:7 [B25] 徐绍炳等. 分析试验室, 2006, 10:44 [B26] [B27] 邵承斌等. 分析试验室, 2006, 11: 103 孙家娟等. 分析试验室, 2006, 12: 26 [B28] 李有琴等. 分析试验室, 2006, 12: 35 [B29] [B30] 马 祯等. 分析试验室, 2007, 02; 30

	ALL 11 66 (XICX) 574	
[B31]	刘 壮等. 分析试验室 2007, 02: 67	[B81] 杜芳艳等. 分析测试学报, 2006, 01: 115
[B32]	刘爱丽等. 高等学校化学学报, 2005, 02: 231	[B82] 张君才. 分析测试学报, 2006, 01: 112
[B33]	楚 霞等. 高等学校化学学报, 2005, 09: 1637	[B83] 杨 涛等. 分析测试学报, 2006, 02: 10
[B34]	李嘉庆等. 高等学校化学学报, 2005, 10: 1808	[B84] 马淮凌等. 分析测试学报, 2006, 02: 39
[B35]	李利军等. 化学通报, 2006, 10: 785	[B85] 李新华等. 分析测试学报, 2006, 03: 95
[B36]	孙 伟等. 应用化学, 2005, 03: 242	[B86] 吴海霞等. 分析测试学报, 2006, 04: 1
[B37]	高 朋等. 应用化学, 2005, 05; 578	[B87] 李利军等. 分析测试学报, 2006, 05: 38
[B38]	郑建斌等. 应用化学, 2005, 06: 595	[B88] 李春哲等. 分析测试学报, 2006, 05: 102
[B39	艾 珍等. 应用化学, 2006 05: 566	[B89] 邱 萍等. 分析测试学报, 2006, 05: 110
[B40	包晓玉等. 应用化学, 2006 08: 858	[B90] 张 兰等. 分析测试技术与仪器, 2005, 01; 17
[B41]	王福民. 应用化学, 2006, 10: 1112	[B9I] 任乃林等. 分析测试技术与仪器, 2005, 01: 28
[B42]	李丽 等. 应用化学, 2007, 01; 71	[B92] 冒爱荣等. 分析测试技术与仪器, 2005, 03: 182
[B43]	何 为等. 冶金分析, 2006 01; 52	[B93] 刘长发等. 分析测试技术与仪器, 2006, 03; 171
[B44	张 江. 冶金分析, 2006, 05: 56	[B94] 李志果等. 分析科学学报, 2005, 01: 30
[B45]	马淮凌等. 化学研究与应用, 2005 04: 460	[B95] 陈婉华等. 分析科学学报, 2005, 01: 54
[B46]	高 朋等. 化学研究与应用, 2005, 04: 511	[B96] 张君才等. 分析科学学报, 2005, 01: 69
	孙 伟等. 化学研究与应用, 2005, 04, 556	
[B47]		
[B48]	李银姬等. 化学研究与应用, 2005, 10: 1219	[B98] 王学亮等. 分析科学学报, 2005, 02: 135
[B49	易兰花等. 化学研究. 2005. 01: 59	[B99] 赵云芳等. 分析科学学报, 2005, 02: 146
[B50]	周享春等. 化学研究, 2005, 01: 65	[B100] 雷和花等. 分析科学学报, 2005, 02: 173
[B51]	张亚锋等. 化学研究, 2005, 03, 84	[B101] 陈养民等. 分析科学学报, 2005, 04: 396
[B52]	蔡亚岐等. 分析化学, 2005, 04: 475	[B102] 徐 斌等. 分析科学学报, 2005, 04: 414
[B53]	汪振辉等. 分析化学, 2005, 05: 671	[B103] 严志红等. 分析科学学报, 2005, 04: 420
[B54]	杨丽珠等. 分析化学, 2005, 05: 675	[B104] 许海燕等. 分析科学学报, 2005, 05: 539
[B55]	李新民等. 分析化学, 2005, 06: 869	[B105] 芦 飞等. 分析科学学报, 2005, 06: 616
[B56]	吴守国等. 分析化学, 2005, 06: 896	[B106] 刘 壮等. 分析科学学报, 2005, 06: 699
[B57]	彭 贞等. 分析化学, 2005, 07: 977	[B107] 袁利杰等. 分析科学学报, 2006, 01: 28
[B58]	徐 斌等. 分析化学, 2005, 07: 981	[B108] 徐 斌等. 分析科学学报, 2006, 01: 49
[B59]	程 琼等. 分析化学, 2005, 08; 1068	[B109] 李巧云等. 分析科学学报, 2006, 01: 52
[B6Q	刘 宁等. 分析化学, 2005, 09: 1261	[B110] 孙 伟等. 分析科学学报, 2006, 02: 145
[B61]	祝海珍等. 分析化学, 2005, 09: 1283	[B111] 马淮凌等. 分析科学学报, 2006, 02: 212
[B62]	齐菊锐等. 分析化学, 2005, 12: 1740	[B112] 杨丽珠等. 分析科学学报, 2006, 02: 239
[B63]	王瑞侠等. 分析化学, 2006, 01: 111	[B113] 夏新泉等. 分析科学学报, 2006, 03: 296
[B64]	朱永春等. 分析化学, 2006, 05: 721	[B114] 张 娟等. 分析科学学报, 2006, 03: 315
[B65]	彭 娟等. 分析化学, 2006, 06: 817	[B115] 彭 贞等. 分析科学学报, 2006, 03: 318
[B66	李利军等. 分析化学, 2006 08: 1129	[B116] 孙 伟等. 分析科学学报, 2006, 04: 385
[B67]	孙 伟等. 分析化学, 2006 09: 1265	[B117] 李有琴等. 分析科学学报, 2006, 04: 421
[B68]	田新娟等. 分析化学, 2006 09: 1283	[B118] 王桂芬等. 分析科学学报, 2006, 04: 444
[B69	梁立娜等. 分析化学, 2006 10: 1371	[B119] 罗金香等. 分析科学学报, 2006, 04: 458
[B70	杨 涛等. 分析化学, 2006. 10; 1415	[B120] 楚 霞等. 分析科学学报, 2006, 05; 497
[B71]	杜 攀等. 分析化学, 2006. 12: 1688	[B121] 韩晓霞等. 分析科学学报, 2006, 05: 509
[B72]	李光文等. 电化学, 2006, 04: 449	[B122] 张君才等. 分析科学学报, 2006, 06: 701
[B73]	毛 勋等. 分析测试学报, 2005, 03: 34	[B123] 李新华. 理化检验(化学分册), 2005, 02, 119
. ,	孟 宁等. 分析测试学报, 2005, 03: 56	
[B74]		
[B75]	张晓蕊等. 分析测试学报. 2005. 03: 101	[B125] 孙延一. 理化检验(化学分册), 2005, 04, 229
[B76]	李海南等. 分析测试学报, 2005. 04: 86	[B126] 宋兴良等. 理化检验(化学分册), 2005, 04, 261
[B77]	谭学才等. 分析测试学报. 2005. 06: 32	[B127] 毛 勋等. 理化检验(化学分册), 2005, 06, 388
[B78]	李建平等. 分析测试学报, 2005. 06: 52	[B128] 张君才等. 理化检验(化学分册), 2005, 06, 393
[B79]	王 磊等. 分析测试学报, 2005, 06: 89	[B129] 徐 斌等. 理化检验(化学分册), 2005, 09. 654
[B8Q	李巧云等. 分析测试学报, 2006 01: 102	[B130] 谢红旗等. 理化检验(化学分册), 2005, 10, 728

[B131] 张 利等. 理化检验(化学分册), 2005, 10: 748	[C37] 王广凤等. 应用化学,2005, 02: 168
[B132] 刘梦琴等. 理化检验(化学分册), 2006, 04: 262	[C38] 贾 莉等. 应用化学,2005, 02:172
[B133] 师兆忠等. 理化检验(化学分册), 2006, 05; 329	[C39] 杨小红等. 应用化学,2005, 07: 776
[B134] 李巧云. 理化检验(化学分册), 2006, 05: 380	[C40] 张升晖等. 应用化学,2005, 08: 857
[B135] 李丽敏等. 理化检验(化学分册), 2006, 06: 430	[C41] 罗济文等.应用化学,2005, 11:1239
[B136] 彭 贞等. 理化检验(化学分册), 2006, 06: 437	[C42] 汪振辉等. 应用化学,2006, 05: 528
[B137] 毕淑云等. 理化检验(化学分册), 2006, 06: 455	[C43] 孙登明等.应用化学,2006,11:1214
[B138] 王福民. 理化检验(化学分册), 2006, 07: 539	[C44] 王 _敔 清等. 冶金分析, 2005, 03: 5
[B139] 刘步明等. 理化检验(化学分册), 2006, 08: 617	[C45] 李东辉等. 冶金分析, 2005, 06:5
[B140] 匡云飞等. 理化检验(化学分册), 2006, 08: 646	[C46] 梁克中等. 化学研究与应用, 2006, 06: 659
[B141] 张灏杰等. 理化检验(化学分册), 2006, 12: 994	[C47] 夏新泉等. 化学研究与应用,2006,07:848
[B142] 易兰花等. 理化检验(化学分册), 2007, 01: 57	[C48] 任健敏等. 化学研究与应用, 2006, 07: 860
[B143] 张著森等. 理化检验(化学分册), 2007, 02: 128	[C49] 孙新枝. 化学研究,2006, 02: 80
2 微电极、超微电极和修饰电极	[C50] 李 平等. 分析化学, 2005, 01:77
[C1] 张 卉等. 分析试验室, 2005, 03: 27	[C51] 斯桂英等. 分析化学, 2005, 01: 83
[C2] 赵艳霞等. 分析试验室, 2005, 03: 71	[C52] 汪振辉等. 分析化学, 2005, 04: 523
[C3] 毕淑云等. 分析试验室, 2005, 04: 40	[C53] 魏培海等.分析化学,2005,05:703
[C4] 陈 伟等. 分析试验室, 2005, 05: 4	[C54] 李美仙等. 分析化学, 2005, 09: 1211
[C5] 刘传银等. 分析试验室, 2005, 06: 13	[C55] 于 萍等. 分析化学, 2005, 09: 1239
[C6] 汪振辉等. 分析试验室, 2005, 06: 43	[C56] 瞿万云等. 分析化学, 2005, 10: 1431
[C7] 陶海升等. 分析试验室, 2005, 07: 21	[C57] 阚显文等. 分析化学, 2005, 11: 1573
[C8] 孙登明等. 分析试验室, 2005, 07; 28	[C58] 林 丽等. 分析化学, 2006, 01; 31
[C9] 周跃明等. 分析试验室, 2005, 07: 51	[C59] 张 君等. 分析化学, 2006, 01: 47
[C10] 张 英等. 分析试验室 2005, 10: 1	[C60] 秦玉华等. 分析化学,2006 01:80
[C11] 陶海升等. 分析试验室 2005, 10: 17	[C61] 汪振辉等.分析化学,2006,01:87
[C12] 马建国等. 分析试验室 2005, 11: 5	[C62] 于巧玲等.分析化学,2006 02:247
[C13] 马 伟等. 分析试验室 2005, 11; 29	[C63] 王玉春等. 分析化学, 2006, 03: 375
[C14] 李 军等. 分析试验室 2005, 11; 40	[C64] 任春艳等. 分析化学, 2006, 04: 514
[C15] 王 娜等. 分析试验室 2005, 12: 44	[C65] 邓雪蓉等. 分析化学, 2006, 05: 637
[C16] 向翠丽等. 分析试验室 2006 02: 19	[C66] 孙登明等. 分析化学, 2006, 05: 668
[C17] 李明齐等. 分析试验室 2006 03: 119	[C67] 方 成等. 分析化学, 2006, 05; 691
[C18] 胡军福等. 分析试验室 2006, 07: 5	[C68] 王福昌等. 分析化学, 2006, 05; 725
[C19] 石银涛等. 分析试验室 2006, 10; 15	[C69] 李桂新等.分析化学,2006,07:955
[C20] 王长芹等. 分析试验室 2007, 01; 27	[C70] 徐 青等. 分析化学, 2006, 07: 971
[C21] 李洪坤等. 分析试验室 2007, 01: 89	[C71] 李春香等. 分析化学, 2006, 07: 999
[C22] 董文举等. 分析试验室 2007, 02; 6	[C72] 陈贤光等. 分析化学, 2006, 08: 1063
[C23] 赵 爽等. 高等学校化学学报, 2005, 01: 22	[C73] 艾仕云等.分析化学,2006,07:1068
[C24] 朱明智等. 高等学校化学学报, 2005, 05: 838	[C74] 黄余改等. 分析化学, 2006, 08: 1119
[C25] 焦 奎等. 高等学校化学学报, 2005, 05: 841	[C75] 李建平等. 分析化学, 2006, 08: 1141
[C26] 关晓辉等. 高等学校化学学报, 2005, 10: 1825	[C76] 陆克平等.分析化学,2006 11: 1661
[C27] 朱明智等. 高等学校化学学报, 2006, 02: 233	[C77] 荣联清等.分析化学,2006 12:1683
[C28] 孙莹莹等. 高等学校化学学报, 2006, 05: 839	[C78] 李江文等.分析化学,2006,s1;s5
[C29] 杨 涛等. 高等学校化学学报, 2006, 12: 2294	[C79] 马 伟等. 分析化学, 2007, 01: 66
[C30] 李 平等. 化学学报, 2005, 11; 1075	[C80] 孙旦子等. 分析化学, 2007, 01: 139
[C31] 焦 奎等. 化学学报, 2005, 11: 1100	[C81] 罗红斌等. 电化学, 2006, 03: 329
[C32] 唐 婷等. 化学学报, 2005, 22; 2042	[C82] 王红娟等。电化学,2007,01:72
[C33] 归国风等. 化学学报, 2006, 21; 2185	[C83] 任祥忠等.分析测试学报,2005,02:32
[C34] 董慧民等. 化学通报, 2006 02: 127	[C84] 刘传银等. 分析测试学报, 2005, 04: 13
[C35] 黄燕生等. 化学通报. 2006. 09. 656	[C85] 艾 珍等. 分析测试学报, 2005, 05: 56
[C36] 张 卉等. 中国科学 B 辑 化学, 2005, 01: 17	[C86] 张 君等. 分析测试学报, 2005, 06: 6

[C87]	陈京才等. 分析测试学报, 2006, 01: 16	[D12] 赵丽平等. 分析试验室, 2006, 07: 115
[C88]	何晓英等. 分析测试学报, 2006, 03: 39	[D13] 贺秀兰等. 分析试验室, 2006, 09, 1
[C89	朱永春等. 分析测试学报, 2006, 05; 45	[D14] 唐明宇等. 分析试验室, 2007, 03, 18
[C90	左国防等. 分析测试学报, 2006, 06; 46	[D15] 丁艳君等. 高等学校化学学报, 2005, 02: 222
[C91]	魏福祥等. 分析测试学报, 2006 06: 53	[D16] 吕鉴泉等. 高等学校化学学报, 2005, 02: 238
[C92	汤英童等. 分析测试学报, 2007, 01; 42	[D17] 吴再生等. 高等学校化学学报, 2005, 03: 441
[C93	李建平等. 分析测试学报, 2007, 01: 100	[D18] 李金花等. 高等学校化学学报, 2005, 04: 647
[C94	周谷珍等. 分析测试技术与仪器, 2005, 01: 13	[D19] 金兴良等. 高等学校化学学报, 2005, 05: 844
[C95]	郭志谋等. 分析科学学报, 2005, 01; 51	[D20] 刘志航等. 高等学校化学学报, 2005, 06; 1049
[C96	景爱华等. 分析科学学报, 2005, 02: 143	[D21] 李金花等. 高等学校化学学报, 2005, 08; 1432
[C97]	傅崇岗等. 分析科学学报, 2005, 03: 256	[D22] 王桂香等.高等学校化学学报,2005,10;1812
[C98	刘有芹等. 分析科学学报, 2005, 04: 378	[D23] 王亚珍等. 高等学校化学学报, 2006, 01: 43
	陈东初等. 分析科学学报, 2005, 04: 432	
[C99		. ,
[C100]	孙登明等. 分析科学学报, 2005, 05; 530	[D25] 孙 伟等. 高等学校化学学报, 2006, 10: 1859
[C101]	瞿万云. 分析科学学报, 2006, 01: 55	[D26] 张凌燕等. 高等学校化学学报, 2006, 16: 1711
[C102]	张水锋等. 分析科学学报, 2006, 03; 279	[D27] 蒋晓华等. 高等学校化学学报, 2007, 03: 450
[C103]	李明齐等. 分析科学学报, 2006, 03; 299	[D28] 马 洁等. 化学通报, 2006, 12, 916
[C104]	孙一新等. 分析科学学报, 2006, 04: 425	[D29] 袁 若等. 中国科学 B 辑 化学, 2006 05: 425
[C105]	颜权平等. 分析科学学报, 2006, 05: 523	[D30] 郑 静等. 中国科学 B 辑 化学, 2006, 06; 485
[C106]	王 娜等. 分析科学学报, 2006, 05: 537	[D31] 薛晓康等. 应用化学, 2005, 04, 435
[C107]	于海燕等. 分析科学学报, 2006, 05: 559	[D32] 梁汝萍等. 应用化学, 2005, 11; 1192
[C108]	王成行等. 分析科学学报, 2006, 06: 655	[D33] 王成行等. 应用化学, 2006, 04, 404
[C109]	李茂国等. 理化检验(化学分册), 2005, 05: 305	[D34] 刘 平等. 应用化学, 2006, 05, 519
[C110]	干 宁等. 理化检验(化学分册), 2005, 09: 625	[D35] 康天放等. 应用化学, 2006, 10, 1099
[C111]	刘传银等. 理化检验(化学分册), 2005, 09: 644	[D36] 刘立行等. 冶金分析, 2006, 05, 84
[C112]	宋 远志. 理化检验(化学分册), 2005, 11: 823	[D37] 黄西朝等. 化学研究与应用, 2005, 02, 267
[C113]	李 军等. 理化检验(化学分册), 2006, 02: 83	[D38] 冉 琮等. 化学研究与应用,2005,03:378
[C114]	邓培红等. 理化检验(化学分册), 2006, 04: 286	[D39] 徐肖邢. 化学研究与应用, 2005, 06, 811
[C115]	周谷珍等. 理化检验(化学分册), 2006, 05: 331	[D40] 孙爱丽等. 化学研究与应用, 2006, 02, 182
[C116]	李东辉等. 理化检验(化学分册), 2006, 05: 259	[D41] 贺 艳等. 化学世界, 2006, 08, 449
[C117]	邓培红等. 理化检验(化学分册), 2006, 07: 562	[D42] 张 玉等. 化学研究, 2005, 02, 45
[C118]	夏平宇等. 理化检验(化学分册), 2006, 08: 604	[D43] 张东霞等. 化学研究, 2006, 04, 76
[C119]	马明明. 理化检验(化学分册), 2006, 08: 651	[D44] 李春香等. 分析化学, 2005, 01; 9
[C120]	张 岩等. 理化检验(化学分册), 2006, 09: 726	[D45] 顾丽波等. 分析化学, 2005, 01; 17
[C121]	邓培红等. 理化检验(化学分册), 2006, 11: 933	[D46] 时巧翠等. 分析化学, 2005, 03, 329
[C122]	王明艳等. 理化检验(化学分册), 2006, 12: 984	[D47] 门 洪等. 分析化学, 2005, 03, 428
[C123]	马建国等. 理化检验(化学分册), 2007, 01: 1	[D48] 杨志宇等. 分析化学, 2005, 04, 538
[C124]	谢红旗等. 理化检验(化学分册), 2007, 02: 141	[D49] 刘长宇等. 分析化学, 2005, 05, 609
3 离	子选择性电极与传感器	[D50] 王保珍等. 分析化学, 2005, 06, 789
[D1]	吴拥军等. 分析试验室, 2005, 01: 49	[D51] 孟范平等. 分析化学, 2005, 07: 922
[D2]	王未肖等. 分析试验室, 2005, 02: 55	[D52] 王成行等. 分析化学, 2005, 10, 1473
[D3]	刘 艳等. 分析试验室, 2005, 03: 19	[D53] 赵常志等. 分析化学, 2005, 10, 1476
[D4]	文 媛. 分析试验室, 2005, 07: 61	[D54] 朱明智等. 分析化学, 2005, 10, 1509
[D5]	徐肖邢等. 分析试验室, 2005, 12; 68	[D55] 王怀生等. 分析化学, 2005, 11; 1623
[D6]	黄超伦等. 分析试验室, 2006, 01; 95	[D56] 李敏健等. 分析化学, 2005, 12, 1701
[D7]	干 宁等. 分析试验室, 2006, 02; 55	[D57] 蔡 强等. 分析化学, 2006, 01: 65
[D8]	周 激等. 分析试验室, 2006, 05: 82	[D58] 侯宪全等. 分析化学, 2006, 03, 303
[D9]	刘 葵等. 分析试验室, 2006, 06: 46	[D59] 黎雪莲等. 分析化学, 2006, 03, 389
[D10]	黄西朝等. 分析试验室, 2006, 06: 56	[D60] 郭萌萌等. 分析化学, 2006, 03, 399
[D10]	魏小平等. 分析试验室, 2006, 07: 90	[D61] 干 宁等. 分析化学, 2006, 04, 479
التصا	2/613:1 寸・/J 1/I pk/型土) 2000) V/: 70	[DOI] 1 4. 71/11 DT: 200; 04; 4/7

许媛媛等. 分析化学, 2006, 05: 608 LD621 麦智彬等. 分析化学, 2006, 06: 801 [D63] 昭等. 分析化学, 2006, 07: 910 [D64] 宋 [E1] 艳等. 分析化学, 2006, 09: 1319 [D65] [E2] 冰等. 分析化学, 2006, 12: 1779 [D66] [E3] [D67] 李华清等. 分析化学, 2006, s1; s1 [E4] 周亚民等. 分析化学, 2006, s1; s195 [D68] [E5] 波等. 分析化学, 2006, s1; s306 [D69] [E6] 斌等. 分析化学, 2007, 02: 196 [D70] [E7] 李 荫等. 分析测试学报, 2005, 01:53 [D71] [E8] [D72] 戴建远等. 分析测试学报, 2005, 01: 68 [E9] 李春香等. 分析测试学报, 2005, 03: 25 [D73] 颜振宁等. 分析测试学报, 2005, 03: 104 [D74] [D75] 刘 颜等. 分析测试学报, 2005, 04: 24 [D76] 黄超伦等. 分析测试学报, 2005, 04: 35 谭学才等. 分析测试学报, 2005, 05: 1 [D77] [D78] 聂雪梅等. 分析测试学报, 2005, 05: 50 宁. 分析测试学报, 2005, 06: 10 [D79] 罗恩平等. 分析测试学报, 2005, 06: 25 [D80] 戴小锋等. 分析测试学报, 2006, 01: 49 [D81] [D82] 周亚民等. 分析测试学报, 2006, 04: 20 颜振宁等. 分析测试学报, 2006, 05. 7 [D83] 曾红娟等. 分析测试学报, 2006, 06: 23 [D84] [F1] 于巧玲等. 分析测试学报, 2006, 06: 31 [D85] [F2] 高风仙等. 分析测试学报, 2007, 01:81 [D86] [F3] [D87] 张正奇等. 分析科学学报, 2005, 01:5 [F4] 黄超伦等. 分析科学学报, 2005, 01: 48 [D88] [F5] 汤 琳等. 分析科学学报, 2005, 02: 123 [D89] [F6] [D90] 李 丹等. 分析科学学报, 2005, 03: 241 [F7] 陈东初等. 分析科学学报, 2005, 03: 283 [D91] [F8] 崔莉凤等. 分析科学学报, 2005, 04: 417 [D92] [F9] [D93] 左伯莉等. 分析科学学报, 2005, 05: 491 挺等. 分析科学学报, 2005, 06: 649 [D94] 杜宝中等. 分析科学学报, 2006, 01: 59 [D95] 朵等. 分析科学学报, 2006, 02: 243 [D96] [D97] 聪等. 分析科学学报, 2006, 02: 245 王志杰等.;分析科学学报,2006,03:249 [D98] [D99] 李春香等. 分析科学学报, 2006, 03: 339 云等. 分析科学学报, 2006 04: 441 [D100] 龚淑果等. 分析科学学报, 2006, 05: 527 [D101] [D102 智. 理化检验(化学分册), 2005, 06: 383 [D103 石晓霞等. 理化检验(化学分册), 2005, 08:600 丹等, 理化检验(化学分册), 2006, 04: 245 [D104 [D105 钢等. 理化检验(化学分册), 2006, 04: 289 归国风等. 理化检验(化学分册), 2006, 05: 325 [D106] 李正平等. 理化检验(化学分册), 2006, 05: 363 [D107] [D108] 马明明等. 理化检验(化学分册), 2006, 05: 397

徐肖邢等. 理化检验(化学分册), 2006, 12: 973

王建雅等. 理化检验(化学分册), 2006, 12: 1010

赵凯元等. 理化检验(化学分册), 2007, 01: 45

[D109]

[D110]

[D111]

张丽娜等, 化学学报, 2007, 06: 537 [D112] 4 示波分析法 李巧云等. 分析试验室, 2005, 08, 51 仲红波等. 分析试验室, 2005, 12, 18 李济权等. 分析试验室, 2006, 05: 1 郑建斌等. 应用化学, 2005, 07: 726 张国福等. 化学世界, 2005, 12, 719 倪宏刚等. 电化学, 2005, 01: 224 张国福等. 分析科学学报, 2006, 03, 365 刘进邦等. 分析科学学报, 2006, 05, 617 马淮凌等. 理化检验(化学分册), 2005, 03: 156 锋. 理化检验(化学分册), 2005, 03: 204 [E10] 韩志萍等. 理化检验(化学分册), 2005, 04; 245 [E11] [E 12] 郑建斌等. 理化检验(化学分册), 2005, 07: 467 楠等. 理化检验(化学分册), 2005, 09: 636 [E13] 邹晓莉等. 理化检验(化学分册), 2006, 02; 109 [E14] [E 15] 严规有等. 理化检验(化学分册), 2006, 06: 443 范大和等. 理化检验(化学分册), 2006, 07, 565 [E16] 倪宏刚等. 理化检验(化学分册), 2006, 07: 569 [E17] 张建民等. 理化检验(化学分册), 2006, 10:796 [E18] [E19] 徐 敏等. 理化检验(化学分册), 2007, 03, 201 5 电泳及色谱电化学 林 丽等. 分析试验室, 2005, 04: 43 潘爱华等. 分析试验室, 2005, 05: 40 曾暖茜等. 分析试验室, 2005, 09. 9 勾凌燕等. 分析试验室, 2006, 01:90 彭友元等. 分析试验室, 2006, 02: 92 墨淑敏等. 分析试验室, 2006, 05: 36 黄宝美等. 分析试验室, 2006, 07:1 冯海清等. 分析试验室, 2006, 08: 21 黄宝美等. 分析试验室, 2006, 12:51 [F10] 杨冰仪等. 高等学校化学学报, 2005, 02, 227 峰等. 高等学校化学学报, 2005, 05, 825 [F11] 炜等. 高等学校化学学报, 2005, 0& 1424 [F12] 林伟丰等. 高等学校化学学报, 2006, 11; 2070 [F13] [F14] 杨冰仪等. 应用化学, 2005, 05: 484 徐健君等. 应用化学, 2005, 06: 581 [F15] [F16] 林伟丰等. 应用化学, 2006, 02: 136 李全文等. 应用化学, 2006, 12: 1317 [F17] 翁前锋等. 色谱, 2005, 01: 18 [F18] [F19] 兰等. 色谱, 2005, 01: 22 [F20] 兰等. 色谱, 2005, 02: 138 翟海云等, 色谱, 2005, 02: 212 [F21] [F22] 魏培海等. 色谱, 2005, 03: 258 亮等. 色谱, 2005, 05: 524 [F23] 索志荣等. 色谱, 2005, 06: 626 [F24] [F25] 邢晓平等. 色谱, 2006, 02: 192 荔等. 色谱, 2006, 02, 201 [F26] 王 [F27] 刘 琳等. 色谱, 2006, 03: 247 [F28] 黄宝美等. 化学研究与应用, 2005, 03, 350

[F39]

[F41]

- 林伟丰等。化学研究与应用。2005, 05, 623 [F29]
- 徐健君等. 化学研究与应用, 2005, 05: 644 [F30]
- 傅 亮等. 分析化学, 2005, 02: 161 [F31]
- 黄宝美等. 分析化学, 2005, 02: 211 [F32]
- 王安宝等, 分析化学, 2005, 02: 277 [F33]
- [F34] 峰等. 分析化学, 2005, 03, 313
- 张 兰等. 分析化学, 2005, 03: 392 [F35]
- [F36] 李曙光等. 分析化学, 2005, 04: 442
- 杜 艳等. 分析化学, 2005, 05: 591 [F37]
- 林 丽等. 分析化学, 2005, 05: 711 [F38] 杨丙成等. 分析化学, 2005, 05, 740
- 王清江等. 分析化学, 2005, 07: 969 [F40]
- [F42] 苏彩娜等. 分析化学, 2006, sl. sl35
- 王立世等. 分析测试学报, 2005, 01: 64 [F43]
- 刘芳华等. 分析测试学报, 2005, 03: 125 [F44]

楚清脆等. 分析化学, 2005, 11; 1611

- [F45] 杨若明等. 分析测试学报, 2005, 05: 86
- 翟海云等.;分析测试学报,2006,01:83 [F46]
- 墨淑敏等. 分析测试学报, 2006, 01: 105 [F47]
- 谭炳炎等. 分析测试学报, 2006, 02: 90 [F48]
- [F49] 黄宝美等. 分析测试学报, 2006, 02: 109
- 谢玉璇等. 分析测试学报, 2006, 03: 100 [F50]
- 周兴旺等. 分析科学学报, 2007, 01: 30 [F51]
- 张 兰等. 分析测试技术与仪器, 2005, 01: 22 [F52]
- 钱 疆等. 分析测试技术与仪器, 2006, 03: 176 [F53]
- [F54] 傅崇岗等. 分析科学学报, 2005, 01:9
- 翟海云等. 分析科学学报, 2005, 06: 599 [F55]
- 林伟丰等. 分析科学学报, 2006, 04: 381 [F56]
- [F57] 吴 婷等. 分析科学学报, 2006, 04: 406
- 刘绮文等. 分析科学学报, 2006, 04: 418 [F58]
- 傅崇岗等. 理化检验(化学分册), 2005, 09: 658 [F59]
- [F60] 林伟丰等. 理化检验(化学分册), 2005, 11: 796
- 6 光谱电化学、电致光法
- 马红燕等. 分析试验室, 2005, 03:5 [G1]
- 储海虹等. 分析试验室, 2006, 01: 17 [G2]
- [G3] 王 芬等. 分析试验室, 2006, 02: 40
- 储海虹等. 分析试验室, 2006, 09: 6 [G4]
- [G5] 谢志鹏等. 分析试验室, 2006, 09: 64
- 宋红杰等. 分析试验室, 2007, 01:1 [G6]
- 朱德斌等. 高等学校化学学报, 2005, 07: 1248 [G7]
- 胡小丹等. 高等学校化学学报, 2005, 10: 1900 [G8]
- [G9] 李桂新等. 高等学校化学学报, 2005, 15: 1553
- 王智泳等. 分析化学, 2005, 06: 763 [G10]
- [G11] 薛 静等. 分析化学, 2005, 06: 785
- 储海虹等. 分析化学, 2005, 09: 1303 [G12]
- 昊等. 分析化学, 2007, 01: 143 [G13]
- [G14] 昌 征等. 分析化学, 2007, 02: 247
- 马红燕等. 分析测试学报, 2005, 04: 58 [G15]
- [G16] 储海虹等. 分析测试学报, 2006, 01: 125
- 章丽燕等. 分析科学学报, 2006, 06: 710 [G17]

- [G18] 杨红兵等. 理化检验(化学分册), 2006 07: 526
- 7 石英晶体微天平
- [H1] 钟科军等. 分析化学, 2005, 07, 931
- 熊兴良等. 分析化学, 2005, 12: 1803 [H2]
- 左伯莉等. 分析测试学报, 2005, 05; 26
- 化学计量学方法
- 范 军等. 高等学校化学学报, 2005, 11: 2010 [I 1]
- 张水锋等. 分析化学, 2005, 04, 487
- [13] 熊建辉等. 分析化学, 2005, 06, 755
- 9 电位分析及其他
- [J1] 张 云等. 分析试验室, 2005, 03, 44
- 董慧茹等. 分析试验室, 2005, 04: 46 [J2]
- 李彦威等. 分析试验室, 2005, 08: 79 [J3]
- [J4] 梁立娜等. 分析试验室, 2005, 11: 66
- 安富强等. 分析试验室, 2006, 03: 115 [J5]
- 李明华等, 分析试验室, 2006, 04: 5 [J6]
- [J7] 蔡玉娥等. 分析试验室, 2006, 08: 7
- [J8] 贾文丽等. 高等学校化学学报, 2006, 11, 2056
- 周谷珍等. 化学学报, 2005, 22: 2093 [J9]
- 朱志良等. 应用化学, 2006, 04, 366 [J10
- [J11] 李建平等. 应用化学, 2006, 09: 1006
- 贺晓唯等. 冶金分析, 2005, 01: 87 [J12
- 何智娟等. 冶金分析, 2005, 02, 6 [J13
- [J14 干 宁. 冶金分析, 2006, 02, 5
- 梁述忠等. 冶金分析, 2006, 04, 47 [J15
- 胡晓静等. 冶金分析, 2007, 01: 29 [J16
- 彭彩红等. 化学世界, 2005, 02, 86 [J17
- 常文贵等, 化学世界, 2006, 10, 589 [J18
- [J19 刘传银等. 分析化学, 2005, 08, 1171
- [J2Q 张 云等. 分析化学, 2005, 12, 1764 上官国强等. 分析化学, 2006 01: 10
- [J22 周谷珍等. 分析化学, 2006, 02, 155
- 习玲玲等. 分析化学, 2006, 12, 1763 [J23
- 梁镇海等. 分析化学, 2006, s1: s145 [J24
- 朱延松等. 分析化学, 2007, 02, 201 [J25
- [J26 冯殿义等. 分析测试学报 2005, 06: 29
- 刘传银等. 分析测试学报 2005 06: 116 [J27]
- [J28 高云涛等. 分析测试学报 2006 03:70
- 张有智等. 分析测试学报 2006 04: 111 [J29
- 毛有安等. 分析科学学报 2005, 02: 176 [J30
- 荣等. 分析科学学报 2005, 02: 235 [J31]
- [J32 修 荣等. 分析科学学报 2005 03: 351
- 刘玉峰等. 分析科学学报 2005, 04: 411 [J33
- [J34 杜宝中等. 分析科学学报 2005, 05: 579
- [J35 李慧芝等. 分析科学学报 2005, 06: 652
- 高云涛等. 分析科学学报 2006 03: 242 [J36
- [J37 张 云等. 分析科学学报 2006 04: 451
- [J38 薛泽春等. 分析科学学报 2006, 06: 646
- 陆益民. 理化检验(化学分册), 2005, 08: 580 [J39
- [J40 梁述忠. 理化检验(化学分册), 2005, 09:671

[J21]

[14] 吴永宁, 理化检验(化学分册), 2005, 09, 691

[J42] 梁述忠. 理化检验(化学分册), 2005, 12, 914

[J43] 张理平等. 理化检验(化学分册), 2006 07: 574

[J44] 赖晓绮等. 理化检验(化学分册), 2007, 01: 78

10 仪器装置及实验技术

[K1] 刘军山等. 分析化学, 2005, 04: 584

[K2] 李元文等. 分析科学学报, 2006, 05; 597

[K3] 周文峰等. 分析试验室, 2005, 01: 88

Progress and applications in electrochemical analysis

LI Yi-jun*, CHANG Zi-dong and HE Xi-wen (College of Chemistry, Nankai University, Tianjin 300071), Fenxi Shiyanshi, 2007, 26(10): 107~122

Abstract: The progress and applications in electrochemical analysis in China during the period from January 2005 to March 2007 was reviewed. The review contains the following subjects: polarography and voltammetry; micro, supermicro electrodes and chemically modified electrodes; ion-selective electrodes and chemical sensors; oscillography; electrophoresis and chromatography electrochemistry; spectroelectrochemistry; electroluminescence; quartz crystal microbalance; chemometrics; instruments and other techniques. A total of 561 references are cited.

Keywords: Review; Electroanalysis